RSS

Kommunikation

Direkt mischender Sender mit großer Bandbreite

| Autor: Kristin Rinortner

Bild 1: Vereinfachtes Blockschaltbild des direkt mischenden Senders (Bild: Analog Devices)
Bild 1: Vereinfachtes Blockschaltbild des direkt mischenden Senders (Bild: Analog Devices) (Bild 1: Vereinfachtes Blockschaltbild des direkt mischenden Senders (Bild: Analog Devices))

In diesem Tipp stellen wir eine Schaltung vor, in der der analoge Teil eines Senders mit direkter Umwandlung implementiert ist. Unterstützt werden HF-Frequenzen von 500 MHz bis 4,4 GHz.

In diesem Tipp stellen wir eine Schaltung vor, in der der analoge Teil eines Senders mit direkter Umwandlung implementiert ist. Unterstützt werden HF-Frequenzen von 500 MHz bis 4,4 GHz.

Zum Einsatz kommt eine PLL mit einem breitbandigen, integrierten spannungsgesteuerten Oszillator. Die Filterung von Harmonischen des Oszillators von der PLL gewährleistet eine gute Quadratur-Genauigkeit und Seitenbandunterdrückung sowie einen niedrigen Fehlervektor (EVM – Error Vector Magnitude).

Bild 1: Vereinfachtes Blockschaltbild des direkt mischenden Senders (Bild: Analog Devices)
Bild 1: Vereinfachtes Blockschaltbild des direkt mischenden Senders (Bild: Analog Devices)

Rauscharme LDOs stellen sicher, dass das Power-Management keinen nachteiligen Einfluss auf das Phasenrauschen und den EVM hat.

Die Schaltung in Bild 1 enthält den integrierten Fractional-N PLL-Schaltkreis ADF4351 sowie den Breitband-Übertragungsmodulator ADL5375. Der ADF4351 liefert das LO-Signal (Local Oszillator) für den Transmit-Quadratur-Modulator ADL5375, der analoge I/Q-Signale in HF-Signale wandelt. Die beiden Bauteile bilden eine breitbandige Basisband Lösung, die IQ- in HF-Signale umsetzt.

Der ADF4351 wird für ein optimales LO-Phasenrauschen von dem sehr rauscharmen 3,3-V-Regler ADP150 versorgt. Zur Versorgung des ADL5375 kommt das 5-V-LDO-Modell ADP3334 zum Einsatz. Der ADP150 weist ein Ausgangsspannungsrauschen von 9 μVeff. auf und hilft, das VCO-Phasenrauschen zu optimieren und den Einfluss von VCO-Pushing (Äquivalent zur Unterdrückung von Störungen auf der Spannungsversorgung) zu reduzieren.

An den HF-Ausgängen des ADF4351 ist ein Filter erforderlich, um die Harmonischen zu dämpfen und Fehler im Quadratur-Erzeugungsblock des ADL5375 zu minimieren. Messungen und Simulationen haben ergeben, dass ungerade Harmonische mehr als gerade Harmonische zu Quadratur-Fehlern beitragen und, falls auf unter −30 dBc gedämpft, eine Seitenbandunterdrückung von −40 dBc oder besser entsteht.

Die Pegel der zweiten und dritten Harmonischen des ADF4351 entsprechen den Angaben im Datenblatt. Um die dritte Harmonische unter −30 dBc zu bringen ist eine Dämpfung von etwa 20 dB erforderlich.

Diese Schaltung bietet vier Filteroptionen, die vier Frequenzbänder abdecken. Die Filter wurden mit einem differenziellen Eingang von 100 Ω (HF-Ausgänge des ADF4351 mit geeignetem Matching) und einem differenziellen Ausgang von 50 Ω entwickelt (ADL5375 LOIN differenzielle Impedanz). Ein Chebyshev-Verlauf wurde für eine optimale Filterübergangscharakteristik verwendet. Jedoch mit dem Ergebnis eines erhöhten Ripples im Durchlassband.

Diese Filtertopologie erlaubt wahlweise den Einsatz eines komplett differenziellen Filters zur Minimierung der Anzahl der Bauteile, eines massebezogenen Filters für jeden Ausgang oder einer Kombination beider.

Die Ausgangsanpassung des ADF4351 besteht aus dem ZBIAS Pull-up und, in geringerem Umfang, den Entkopplungskondensatoren am Versorgungsknoten. Um eine breitbandige Anpassung zu erreichen, wird empfohlen, entweder eine ohmsche Last (ZBIAS = 50 Ω) oder eine ohmsche Last parallel zu einer reaktiven Last für ZBIAS zu verwenden. Letztere liefert je nach gewählter Induktivität eine geringfügig höhere Ausgangsleistung.

Der Parallelwiderstand kann als differenzielles Bauteil (100 Ω) an der Position C1c platziert werden, um den Platzbedarf auf der Leiterplatte zu minimieren.

Die Grenzfrequenz des Filters sollte etwa 1,2 bis 1,5 mal höher sein als die höchste Frequenz im interessierenden Band. Diese Grenzfrequenz gibt Designspielraum, weil sie wegen parasitärer Elemente normalerweise niedriger ist. Die Einflüsse von Parasitäten auf der Leiterplatte können für eine höhere Genauigkeit mit einem Elektromagnetik-Simulationstool simuliert werden.

Bei Frequenzen unter 1250 MHz ist ein Filter fünfter Ordnung erforderlich. Für 1,25 bis 2,8 GHz genügt ein Filter dritter Ordnung. Für Frequenzen oberhalb von 2,8 GHz ist keine Filterung nötig, da die Pegel der Harmonischen ausreichend niedrig sind, um die Seitenbänder zu unterdrücken.

Den ausführlichen Tipp finden Sie im Internet. Der Autor: Ian Collins,  Analog Devices.

 

Kommentar zu diesem Artikel abgeben

Schreiben Sie uns hier Ihre Meinung ...
(nicht registrierter User)

Zur Wahrung unserer Interessen speichern wir zusätzlich zu den o.g. Informationen die IP-Adresse. Dies dient ausschließlich dem Zweck, dass Sie als Urheber des Kommentars identifiziert werden können. Rechtliche Grundlage ist die Wahrung berechtigter Interessen gem. Art 6 Abs 1 lit. f) DSGVO.
Kommentar abschicken